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The boundary layer functions are sought in the form (2.5). The procedure for construct- 
ing them is analogous to that described above with the sole difference that the functions 
~~,~(n,8) will satisfy boundary conditions of the Neumann type for n = 0 , which enables g,' (O), 
&a (&l) to be determined from the condition for the damping of the boundary layer functions 
to be exponential /3/. 

The asymptotic form of problem B, differs substantially from the asymptotic form of 
problem A, in that the series expansion in powers of e for v(z,tJ) must start with the power 
-2, and this is related, in turn, to the fact that the coefficient of friction is assumed to 
be non-zero. For p-0 the series expansion starts with the zeroth power of 8. 

The system of equations (2.2) to determine the functions u,,, z+, is hyperbolic with two 
double families of characteristics +~con~lt and f~=const, which indeed results in the appear- 
ance of the average with respect to the angular coordinate in the asymptotic form because of 
the requirement for the displacement to be unique. We note that the "radial" part of the 
functions v,, (~~6) is extracted automatically in problem E, . 
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THE PROBLEM OF THE CONTACT BETWEEN A LINEAR ELASTIC BODY 
AND ELASTIC AND RIGID BODIES (A VARIATIONAL APPROACH)* 

A.M. KBLUDNEV 

The problem of the contact between a linear elastic body and a rigid body 
is formulated as a one-sided problem. The solution is determined from the 
variational inequality,.equivalent to the problem of minimizing the energy 
functional in a set of allowable displacements. The regularity of the 
solution is established down to internal points of the oontact boundary. 
A measure is constructed in the subsets of the contact boundary that 
enables the effect of a stamp on an elastic body to be characterized. 
The absolute continuity of this measure is proved at the internal point. 
The problem of the contact of two elastic bodies is examined in a similar 
formulation. The regularity of the solution is established and the nature 
of the effect of one body on the other is clarified. 

1. Contact between an elastic and a rigid body. Formulation of the problem. 

Let an elastic body in the natural state occupy a domain QCR3 with boundary r of class C" 
represented in the form of the union of three parts: I' = I'm U I', U rc.The condition o=O is 

given on r. , where o is the displacement vector. The vector force uifsf = gl is given on r,, 
where n = (n,, n,, nr) is the external normal to the boundary, si, is the stress tensor, gi are 
given surface forces, i,j = 1,2,3, and summation here and below is over repeated subscripts. 
It is assumed that the points r, of the elastic body can interact with the rigid body for 
which the equation of the surface has the form @ (t)=U, where the inequality 0((z)< 0 is 

satisfied for points of the rigid body. In the linear approximation the condition on the 

displacement vector has the form /l/ 

(1.1) 
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Let Hw'@) be a Sobolev space of vector functions having first generalized, square- 
summable derivatives in D that vanish on I',(mesr, >O). Let X denote the set of functions 
from this space that satisfy the inequality (1.1) almost everywhere on rC (in the plane measur 
sense) by considering rc to be a simply-connected domain I' with a smooth boundary ar, of 
class C'. 

The solution of the problem of minimizing the energy functional 

(1.2) 

in the set K satisfies the inequality 

o E K: @II (w), x- w) > 0 Tdx E K (1.3) 

c%I(o) is the gradient of II(O) on N,'(Q).. If the shape of the stamp here agrees with rc, 
then (1.3) is the classical Signorini problem /2/. For simplicity, we will consider the case 
of an elastic body which obeys Hooke's law. 

The smoothness of the solution. It can be proved that if fl Z Le(52), gi EL*(I’,), the 
solution of (1.3) exists and is unique. 

In investigating the qualitative properties of the solution, the proof of its regularity 
in the neighbourhood of the points of r, is essential. We assume everywhere that the shape 
of the stamp does not differ very much from I?,. The exact meaning of this condition is clari- 
fied below. 

Theorem 1. Let the function @ belong to the class C3. Then the solution ok K posses, 
sestwo generalized derivatives in the neighbourhood of the points ZE r, \ C?r,. 

Proof. Let x0 E rE \ a. We select a system of coordinates with origin at the point x0 
such that the plane 514 is tangent to r,at x0, while the axis z3 coincides with the interio. 
normal at this point. Let 

88 = B (r,, In), Bz, to, 0) = Bu (0, 0) = 0 (1.4) 

be the equation of re in the neighbourhood of r0 and 

XI) = o 6% 12) (1.5) 

the equation of the shape of the stamp. Such a representation of the boundary is possible 
because of its smoothness. The meaning of the assumption made above is that the shape of the 
stamp does not differ very much from Te , which again consists of the possibility of the repre- 
sentation (1.5). Inequality (1.1) has the following form in the neighbourhood of the point 
xg (u = Ul‘ u = IL*, m = us): 

Here D is the projection of the boundary (1.4) on the plane z&. 
Let us make a change of variables with a unit Jacobian 

Y, = 513 Y, = 227 Ys = 13 - B (31, ;e*) 

The following formulas will be valid here for an arbitrary smooth function h(z)~7i(Y) : 
h x, = R”, - &I#*,, fk* = 5th - fL*,B+*t &a = E,, 

The transformation mentioned will result in the fact that a fairly small domain 6);,C8 
having the surface z3= /3(r,,rt) as part of its boundary will be mapped homeomorphically onto 
a domain in the space of variables y with a boundary containing pieces of the plane y3 = 0. 
Let y(Q,) be this mapping. We select the domain in the form of hemispheres 

Gz = { f y 14 26, ars.>O), i = *,2,3 

where we consider 6 to be such a small positive number that 
function cp (Y)E Cm 

G3 cy(&,). Furthermore, let the 

side /y I> ‘/ns t and 
possess the properties cp = 1 in cl,cp>O, 1c.p 16: 1, where 'p= 0 out- 
we assume that the second derivatives of the function a- fi with re- 

spect to Yl,Ys are non-negative in G,. The assumption made about the sign of the second 
derivatives of the function a - @ is not essential and can be dropped. We also introduce the 
following notation 

4, h (Y) - Ih (Y + ret) - h (Y)Ir-', Ai& (Y) = --d*j,cti,h (Y). i=1,2 
where ei are the unit vectors, and O<r< 6. It can be shown that if the number h is selected 
in the range 0 < h < ‘i2T2 , the vector % iE @r, G, f&J with the components 

17.h P ii + @'AirE, Sh m 5 + L,(P'&$ 

Cb - ?C + hmz&, lE - iia,- SC+,.] + hmzamAi4 -t h@a,A+d 
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will satisfy inequality (1.6) written in the variables y. 
The carrier XL- o lies in the set B,, U {zQ = fi (zl,zp)J. %or any sufficiently regular 

function p,h such that the carrier p lies in the set mentioned, the following equation holds: 

We now substitute the function u = (ur.,v~,w~) into (1.3) and divide by h-. Because of 
the preceding relationship, we will have two types of components in the inequality obtained: 
those containing and those not containing &,,fiX,. The following assertion holds for the 
components not containing fiXi . The difference between the integrals (there is no summation 
with respect to i here and henceforth) 

can have as upper bound the quantity included in the second braces on the right side of in- 
equality (1.7) (see below) with a constant dependent only on ~(52,) and m. Here each of the 
functions can independently take the values ij,V,I. 

We extract the highest from the expressions containing pxi . They can be estimated as 
before and the maximum of the quantities Bz,r BXi in absolute value can be taken outside the 
integral sign. The other quantities can be estimated more simply. We consequently conclude 
that the following inequality holds: 

1 %,(&(cp@)s~ (&(G))& G (1.7) 
V(QI) 

~1 ma= ( 1 I& 1 f 1 FL 1 + I% + Sk) II 4, ($4 II: + a { II G 111~ + II E 111 II dir (~3) 111 + /I 7 110~1 
8, 

where c2 depends on the domain y(Q,), the ~ami constants, and the function Cp, a, fl; while cl 
depends only on the Lam6 constants.All the norms written down are referred to the domain Y (a,). 

Furthermore, we use the Korn inequality 

II di,($) (11’ <CO $ ukl @AT (cp3 ekl & ((~53)) & (1.8) 

YW 

Here the constant co is independent of Z and cp . Selecting the quantity 6 characterizing 
the domain G,to be sufficiently small, we can assume that 

mar 1 I fL.1 + j fL\ + BZ, + BFd <(COC~-~ 
L 

where co and Cl are the constants from (1.7) and (1.8). This selection is possible because of 
conditions (1.4). Therefore, we obtain from (1.7) 

IId,,(cp~)lI, Q c 
with a constant c independent of r. Therefore, the second derivatives of the function 73, with 
the exception of GVu., belong to L2 (G,). However, it is seen that the equations 

%)yIy. = F 

are satisfied in the neighbourhood of ya = 0 , where FEL' (GJ. Thus the second derivatives 
of the solution with respect to y, also belong to L2 (G,). The theorem is proved. 

Construction of the measure. The assertion about the existence of a measure characteriz- 
ing the action of the stamp on an elastic body will be proved below. The case when rc has a 
common boundary with r,, and when it has one with r, should be distinguished here. First let 

the points of N, possess the following property: for any XoE arc a neighbourhood d (~0) 
exists such that d(s,) n I? c rc U rq. 

Theorem 2. A measure p can be given in a u-algebra of Bore1 subsets of the boundary re 
such that for all XE H,'(Q) n C(Q U I?,) the following representation holds: 

(1.9) 

Proof. We first note that if the vector x E H,'(Q) is such that xv@>0 on r,, then 

(dn (m), x) > 0. In fact, o i- eXE K,s> 0, hence by substituting 0 f sX as a trial vector 

in (1.31, we obtain the required inequality. We now define a linear manifold of functions 
given on re 

(1.10) 
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The linear functional 

can be defined on Ii'. 

9 (x*) = W-J (4, x) 

The value of up is determined uniquely by this formula. Indeed, if x*'= x*' on frt then 
according to the preceding (&I(o), x1-- x*)>O. Since the reverse inequality is also true, 

we have J, (X+') = II (x*?. 
It can be shown that the manifold V contains all functions from cl(I‘,), and hence, its 

closure in the norm II - IIc(p,j = mrax 1 . ) agrees with the space C(r,). Moreover, a vector h E 
e 

HU' W f-i c @ u F,) exists such that 

hVa?,IVu?/ > 6 > 0, 6 = const 
Hence, for any function X* = v 

I x* I G II x,z Ilccr,, hQW (6 I V @ ) ) 
It therefore follows from the fact that the functional $ is positive that 

I II, (x*1 I Q c II x* Ilccr,,, c = 8-l (cm (4, h) 
Therefore, we conclude that ?# is a linear continuous functional on C(r,). Since it is 

moreover positive, a measure p exists such that 

W*)= j x:& VX*EZ C(r,) 
c 

For a function x* constructed according to the vector xEHol(a) n c(62 u r,) by using 
(l.lO), this formula yields the representation (1.9). The proof of the theorem is completed. 

Absolute continuity of tie measure in P,\ al?,. Let x0 E r, \ ar,. A sufficiently small 
neighbourhood d(x,) of the point x ,, exists that does not contain the points a& . Let the 

vector x = (xl, xs, xa) E Z&?(Q) fl C (Q U r,) b e such that SUpp XE d&) n 8. BecauseofTheorem2. 

(1.11) 

Using the result about the regularity of the solution in the neighbourhood of the point 
x0, we conclude that the left side of this relationship equals 

(1.12) 

Furthermore, we recall the definition. A measure y is called singular with respect to 
the Lebesgue measure if it is concentrated in a set of zero Lebesgue measure. For an arbitr- 
ary measure given on a a-algebra of Bore1 sets of I', (and particularly for ~1, there exists 
a unique decomposition 

Here q(s) is a function summable in the Lebesgue measure (the density of the measure p ), 

and BcIP@ is an arbitrary Bore1 set. 
We will show that y ~0 in r,\ 8r, follows from (1.11) and (1.12). Hence, a deduc- 

tion can be made, in particular, about the impossibility of concentrated actions of the stamp 
on an elastic body at the point rc \ &r,. By our assumption, 1 VQ, If0 on Fe. Let a coord- 
inate system be selected such that a&r)+ 0 for XE d(x,) n r,, I = 1,2,3. Considering, 
in turn, that the non-zero component of x is only xi and equating the right sides of (1.11) 
and (1.12) I we obtain (no summation over i) 

Hence, it follows that the singular component of the measure p is equal to zero in 
d (4 II rc, where the measure density equals 

Q = CQjnj I vm I mxi, I iv= 1,2,3 
Let a denote a vector with components ot,sj,i = 1,2,3. Then the density can be written 

in the form 

Let us now examine the case when rc has a common boundary with I‘,. In other words, for 
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an arbitrary point x,, ear, let a neighbourhood d(s,) exist for which d(s,) n rc re U ro. 

Theorem 3. A measure p can be given on a e-algebra of Bore1 subsets rc \ ar, such 
that for all ~EH,'@)nc,(r,) the representation (1.10) holds. 

That C,(r,) belongs to the space of finite and continuous functions on Z',should here be 
understood to mean that the traces of the components of the vector Jo in re belong to the space 
mentioned. 

We will make some remarks about the proof of the theorem. In this case a linear manifold 
V consisting of the functions X. of the form 

x* = XV@/ IV@ I, x = ff,’ w n co u-c) 
will contain all the functions from Col(F,). Therefore, 
the formula 9 (x.) = (dll (0). x) 

a linear functional + on V defined by 
can be defined in continuity for all functions from CU cl',). Here 

(1.10) will follow from the well-known representation of a linear continuous functional in 
the space of finite continuous functions. 

In this case the density of the measure p also equals oV@/IV0I. 

2. The contact of two elastic bodies. Formulation of the problem. Let twoelastic 
bodies in the natural state, occupying the domains Q and O'from Ra with boundaries r, r', have 
common pieces of the boundary To. If o is the displacement vector of points of the first body, 
and o'of the second, then the fundamental inequality relating these vectors on r,has the form 
/3/ 

on - o'n.,(. 0 on rc (2.1) 

(n = (n,, nz, n,) is the vector of the outer normal to r ). The prime denotes quantities refer- 
ring to the second body. 

The fundamental result is the proof of the regularity of the solution up to IYc and the 
investigation of the qualitative properties of the solution. Exactly as in Sect.1, the solu- 
tion (a,~') will be determined from the variational inequality. We first determine the 
boundary conditions. We consider that r = rc l_i I?@ IJ ro, I? = rc [I r,,+ U I?. The displacement 
vector is given on r. , and the vector of the forces on r,, i.e., 

0=0 on ro; Oij~~j = g, on r. (2.2) 

Analogous conditions are given on re,,ro, . We assume that mes r,> 0 , 
Let H,J(Q') have the same meaning as H,‘(Q). 

mes ros > 0. 
We use the notation H = H,'(Q) x H,#‘(Q’). 

The energy functional of two bodies is represented in the form of the sum of appropriate 
functionals. For each of the bodies it has the form (1.2), where the Lam6 parameters for 
each of the bodies is their own. 

We assume that fi E L*(Q), g; EL* (r,) (similarly for the second body). Under the above- 
mentioned conditions, the solution of the problem of minimizing the energy functional E(o, 

0’) - n (0) + II’ (a’) in the closed convex set KC H, defined as the set of functions from H 
satisfying the inequality (2.1) almost everywhere in r,, exists and is unique. This solution 
l$ = (0, 0') satisfies the inequality 

9pK: @E(q), x-q)>0 VXEK (2.3) 

Here dE(+) is the gradient of the functional E (9) on H. 
Problem (2.3) certainly allows a differential formulation, namely, the equilibrium equa- 

tions 
aa,,la2, = 4, 

are satisfied in the domains D and Q'. 
Conditions (2.2) are satisfied on r. and r0 (on r,, and r,# , respectively) and, moreover, 

we have on rc 

( 

on - o'n < 0 

a~,(o)n,n,=O or 
ur=o 1 

on-m'n=O 

01 j (0) nj?Zld 0 

a,=0 

We later assume that JY,I?C Cm, and we consider rc to be a simply-connected domain on 

r with a smooth boundary of the class C'. 

The regularity of the solution. Theorem 4. For each point r,~ rc \ X, a neighbourhood 

d (4 C B U Q'Ur, exists such that o E HP (d (.q,) n hl), 0’ E H’ (d (G,) n a’). 
Ideas analogous to those used in proving Theorem 1 are used to prove this theorem. 'Ne 

neighbourhood of the point rOE re \ 6r, is transformed into a circle in the space of the 
variables y by a special coordinate transformation sothat part of the boundary near the Point 

=o transfers into points of the plane. Then a trial function is selected that Satisfies 
(2.1) and enables multiplication of the equilibrium equations by the appropriate derivatives 
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to be reproduced in difference form. This function is substituted into (2.3), which in the 
long run results in an inequality of the type (1.7). Therefore, the presence of square-sum- 
mable second derivatives along the tangent directions and mixed derivatives, is established. 
From the conditions for the equilibrium equations to be valid near the boundary we also obtain 
the existence of square-summable second derivatives along the normal. 

Construction of the measure and its properties. We will formulate a theorem on the exist- 
ence of a measure characterizing the action of one body on another. Exactly as in the problem 
of the interaction between an elastic and a rigid body, the case of the distinct location of 

re, rO, r,, rO,, rW, ,must be examined separately. 
First, for each point s,E ar, let a neighbourhood d(z,) exist that possesses the 

property that d(z,) fl r c re U r. and d (x0) n r’ c re u ros. Hence, the following theoremholds: 
Theorem 5. A measure p can be defined on a a-algebra of Bore1 subsets r, such that for 

arbitrary functions cp = (I*, V')E HnC (r,) the following representation holds (9~ K is the 
solution of (2.3)): 

(dE($). rp)= - \ (yn - y'n)dbr 
+= 

(2.4) 

The properties of the measure constructed in such a manner are determined by the smooth- 
ness of the solution. In particular, the presence of second derivatives for the solution near 
the contact boundary enables us to prove that the singular component of the measure p equals 
zero at the points re \ ar,. The reasoning is similar to that used at the end of Sect.1. The 
density of the measure p turns out to equal -aII(a)nlnl. 

In conclusion, we consider the situation when a neighbourhood d(x,) exists for an arbitr- 
ary point x0 E ar, for which d (x0) n r c r, u ro, d (x0) n r’ c rc u ros. 

Theorem 6. A measure p can be defined on a a-algebra of Bore1 subsets r, \ ar, such 
that for any function cp = (v,v')ea n C,(I;) the representation (2.4) holds. The singular 
component of this measure is zero, 
any compact B c rc \ N,. 

and the density equals --alj(o)npl, where p(B)< +CQ for 
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ON THE FORMULATION AND INVESTIGATION OF A SPATIAL CONTACT PROBLEM 
FOR ELASTIC BODIES UNDER MIXED FRICTION CONDITIONS* 

1.1. ICDDISH 

A spatial contact problem is formulated and investgated for rough elastic 
bodies which touch each other under mixed friction conditions: the elastic 
bodies are separated in one part of the contact domain by a layer of 
viscous incompressible liquid (lubricant), while in the other they are in 
direct contact (such conditions are characteristic for roller bearings, 
gear transmissions, etc.). The problem is reduced to a system of non- 
linear integro-differential and integral equations and inequalities in the 
contact domain, part of the external boundary, and a number of inner 
boundaries that are unknown in advance, but separate the lubricated and 
unlubricated zones. Special cases are problems of dry and completely 
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